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Introduction
Human diseases, especially polygenetic genetic diseases, mainly including heart dis-
ease, hypertension, diabetes, asthma and cancer, are caused by the interaction of mul-
tiple gene loci and environmental factors [1–4]. Therefore, to construct gene regulatory 
network (GRN) and analyze regulatory mechanism have contributed to finding out the 
key network nodes, which could make an importance role in formulating new treatment 
plans and drug targets [5–8].

For gene regulatory network modeling, the existing learning methods could be divided 
into two categories: supervised learning and unsupervised learning [9]. Supervised 
learning methods could simulate problem of gene regulatory network recognition as 
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classification problem. For a certain transcription factor (TF), genes could be divided 
into either TF-regulating genes or non-TF-regulating genes. The known regulation rela-
tionships are utilized to train the classifier and predict the unknown regulation relations. 
Due to the guidance with prior knowledge, supervised learning methods have been 
presented to infer GRN in the past decade. Wang et  al. proposed a novel supervised 
inference method of GRN based on linear programming to infer the potential known 
transcription regulators [10]. Mordelet and Vert presented support vector machine 
(SVM) algorithm to solve binary classification problem of GRN [11]. Cerulo et al. solved 
the problem of unreasonable selection of negative samples [12]. Gillani investigated the 
performances of the different kernel functions of SVM for GRN inference and given the 
guidance about the research on supervised learning in the future [13]. Brouard et al. pro-
posed a Markov Logic network to infer GRN and asymmetric bagging was utilized to 
handle the unbalanced training data [14]. Many neural network models have been also 
utilized to infer GRN [15–17].

The gene expression data used in supervised learning algorithms are all obtained by 
traditional sequencing technology, such as DNA microarray. However, biological tissue 
is composed of a variety of heterogeneous cells, and the differences between single cells 
may have a profound impact on the functions of multicellular organisms. In recent years, 
single-cell RNA-seq technology has been developed, which can be used for unbiased, 
repeatable, high-resolution and high-throughput transcription analysis of single cells 
[18–20]. Compared with the traditional transcriptome analysis of colony cells, single-
cell RNA-seq technology can obtain the expression information of nearly 3000 genes in 
a single cell, which provides a powerful tool for distinguishing the transcriptome char-
acteristics of various cell types in biological tissues, and comprehensively revealing the 
heterogeneity of gene expression between cells and the regulatory relationships between 
genes [21–24]. However, single-cell RNA-seq data has many shortcomings, such as 
high noise, many missing values, etc., so it is still challenging to reconstruct GRN using 
single-cell RNA-seq. Chan et  al. proposed an information theory algorithm based on 
multivariate information measures to infer GRN according to single-cell data [25]. Nan 
et al. created time-stamped cross-sectional expression data and utilized regularized lin-
ear regression to identify GRN [26]. Matsumoto et al. proposed a novel GRN inference 
based on ordinary differential equation from single-cell RNA-seq [27].

In order to investigate the performances of supervised learning methods for GRN 
inference with single-cell RNA-seq data, we proposed a hybrid supervised learning 
method (Single_cell_GRN), which utilizes SVM, random forest, Naive Bayesian (NB), 
GBDT, logical regression (LR), decision tree (DT) and K-Nearest Neighbor (KNN) to 
infer gene regulatory network separately. For SVM, linear kernel, polynomial kernel and 
radial basis function are utilized and investigated. Three real single-cell RNA-seq data-
sets from mouse and human are utilized to test the supervised learning methods.

Methods
Supervised learning methods

Support vector machine

Support vector machine is a kind of machine learning method based on statistical theory, 
which was proposed by Vapnik [28]. It is mainly utilized to solve two-class classification 
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problems. The main idea is to map the samples to the high-dimensional feature space 
(kernel space), in which the linear classifier is constructed in order to obtain the largest 
interval [29]. Due to its advantages in solving small samples, and nonlinear and high-
dimensional pattern recognition, SVM has been widely applied to text classification [30], 
bioinformatics [31, 32], financial data prediction [33], signal processing [34] and image 
processing [35].

The mechanism of SVM is to search the optimal hyperplane to meet the classification 
requirements. Two restricted conditions need to be considered, such as classification 
accuracy and maximizing the blank area on both sides of the hyperplane. So the learning 
process of SVM is an optimization problem.

Give the training dataset (xi, yi), i = 1,2,…,N, N is the number of data, xi is feature vec-
tor, and yi is classification label (+1, –1) . Hyperplane is labeled as (w·x) + b = 0) w and 
b are coefficients and deviation term). The optimal hyperplane problem is constructed as 
follows.

By solving the optimal problem, the optimal solution α∗ = (α∗
1, α

∗
2, . . . , α

∗
N )

T is 
obtained. The optimal classification function could be also obtained as follows.

Linear SVM utilizes hyperplane to divide two kinds of data. If the data itself is nonlin-
ear, it is not suitable to use hyperplane as decision boundary. By kernel function, SVM 
can be applied to solve nonlinear classification problems. Kernel function is utilized to 
replace the inner product between two instances after a nonlinear transformation. The 
common kernel functions contain linear kernel, polynomial kernel and radial basis func-
tion (rbf ), which are defined as followed.

Random forest

Random forest (RF) is a flexible and easy-to-use machine learning algorithm [36]. Com-
pared with SVM, the selection of super parameters has less effect on the performance of 
RF, which is commonly utilized to solve classification and regression problems [37–40]. RF 
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was proposed based on ensemble learning method and decision tree. Its basic unit is deci-
sion tree, which is also a classifier. For an input sample, N trees could create N classification 
results. RF integrates all the classification results by voting method and specifies the cat-
egory with the most voting times as the final output. The principle of RF is given as follows.

(1)	 Firstly M samples are randomly selected from the sample set by bootstrap algo-
rithm. For each sample, K features are selected randomly from all attributes. 
According to the selected K features, a decision tree is established.

(2)	 Repeat step (1) N times in order to obtain N decision trees.
(3)	 Input variables are given to each decision tree, which could output a result. N deci-

sion trees could get N classification results.
(4)	 Calculate the number of votes of all classes and select the classification result with 

the highest number of votes as the final category.

Naive Bayesian

Naive Bayesian is built on Bayes’ theorem and is a typical generative learning method [41]. 
The main idea is to adopt the attribute conditional independence assumption. It assumes 
that all attributes are independent of each other, and the impact of different attributes on 
the classification results is irrelevant. The algorithm can not only simplify the calculation 
and be easy to implement, but also has good robustness. It is commonly used in statistical 
decision-making fields such as text document classification [42] and medical diagnosis [43].

Bayesian theorem is expressed as follows:

where c denotes class, P(c) represents a priori probability, P(c | x) indicates a posteriori 
probability, P(x | c) denotes the class conditional probability and P(x) is the edge probability 
of x.

Based on the assumption of attribute conditional independence, Eqs. (6) can be rewritten 
as:

where d is the number of attributes and xi is the value on the i-th attribute.
Because the denominator in Eqs. 7 is the same for all categories, it has no impact on the 

result. Therefore, the simplified formula of Naive Bayes is defined as follows.

GBDT

GBDT is a type of ensemble learning method [44] and an algorithm with strong gen-
eralization ability [45, 46]. The main idea is to use the negative gradient of the loss 

(6)P(c|x) =
P(c)P(x|c)

P(x)
.

(7)P(x|c) =
P(c)

P(x)

d
∏

i=1

P(xi|c).

(8)c(x) = argmax
c∈C

P(c)

d
∏

i=1

P(xi|c).



Page 5 of 18Yang et al. BioData Mining           (2022) 15:13 	

function to simulate the residual, and take the residual of the previous tree as the 
input of the next tree. In each iteration, the loss decreases rapidly along the negative 
gradient direction, and finally accumulates the prediction results of all trees as the 
final result of the model.

The training dataset is T= {(x1,y1),(x2,y2),…, (xN,yN)}, and the loss function is L(y, f(x)) , 
where xi represents the feature vector and y is the label. The main flowchart of the algo-
rithm is indicated as follows.

(1) Initialize weak learner.

(2) For m= 1,2,…,M, where M is the number of iterations.

(a)	 Calculate the negative gradient of the loss function in the current tree, the residual 
is written as:

(b)	 Fit a regression tree to the target rmi and compute the leaf node region 
Rmj (j = 1, 2, · · · , J ) of the regression tree.

(c)	 For j = 1, 2, · · · , J  , the optimal coefficient of leaf node region is calculated.

(d)	 The strong learner in this iteration is obtained.

(3) After all the iterations, the strong learner is obtained.

Logical regression

Logistic regression [47] is an important statistical model in machine learning and has 
been widely used in biology, epidemiology and other fields [48, 49]. Logical regression 
consists of linear regression and Sigmoid function. The continuous values of the regres-
sion results are allocated between 0 and 1 in order to solve the classification problems. 
The specific process is as follows.

(1) Firstly, assuming that x is the input vector, θ is the parameters to be solved, and y 
represents the prediction result of linear regression, the linear regression model is given 
as follows.
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(2) In LR, the logic function is Sigmoid function, which is defined as follows.

According to Sigmoid function, the output of model is constructed as follows.

The parameter θ can be estimated by the maximum likelihood method, and the 
final model can be obtained by continuously optimizing the parameters through 
inputting the test samples.

Decision tree

Decision tree is a machine learning method used to solve classification problems 
[50]. It is a tree structure that divides the data by making a series of decisions. A 
decision tree contains root node, internal nodes and leaf nodes. The decision-mak-
ing process of the decision tree starts from the root node. By testing the correspond-
ing characteristic attributes of the items to be classified, the output branches are 
selected according to the results. The generation of decision tree is a recursive pro-
cess. Each step will pick up the optimal selection of the current state until the leaf 
node has been selected. Finally take the category stored in the leaf node as the final 
decision result.

In the generation process of decision tree, the key step is the measurement of 
feature selection. The feature selection is based on the principle that the samples 
contained in the branch nodes belong to the same category as much as possible. 
At present, there are three main algorithms for the construction of a decision tree, 
namely ID3, C4.5 and CART. In this paper, we select CART algorithm [51, 52].

CART algorithm utilizes binary recursive segment method to divide the sample 
set into two sub sample sets, which contains feature selection and tree pruning. Gini 
index is utilized to select the features, determine the optimal partition points and 
measure the purity of dataset D, which is defined as follows.

where p(xi) is the probability of category xi , and n is the number of categories in 
D. Gini (D) reflects the probability that the category labels of two samples are incon-
sistent, which are randomly selected from dataset D. Therefore, the smaller the Gini 
(D) is, the higher the purity of the dataset D is.
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K‑Nearest Neighbor

K-Nearest Neighbor is a commonly used machine learning algorithm [53, 54]. It can 
be utilized to solve classification and regression problems, and is widely used in data 
mining and pattern recognition. The algorithm idea is to identify the K training sam-
ples of the known categories that are most similar to the test sample based on some 
distance measures in the sample space. Then judge the category of the sample based 
on the information of K neighbors. The main algorithm flowchart of KNN is given as 
follows.

(1) Build the training sample set and calculate the distances between the test sam-
ple and the training samples based on the distance measurement.
(2) Sort the training samples in ascending order according to the distances.
(3) Select the K training samples closest to the test one as the K neighbors of the 
test sample.
(4) Count the category frequencies of K neighbors, and select the category with 
the highest frequency as the category of the test sample.

GRN inference with single‑cell RNA‑seq data and supervised learning method

For the inference of gene regulatory networks, the complex regulatory relationships 
among genes are identified, which could be evolved to two-class problems. Single-
cell RNA-seq data and the corresponding regulatory relationships between genes are 
collected from the public databases. Count up the number of TF as NTF. With the 
regulatory networks verified by biology experiments from the well-known databases, 
for each regulatory factor i, all the target genes set can be divided into two catego-
ries. The target genes regulated by the regulator factor i are marked as positive gene 
set, while the target genes not regulated by the regulator factor i are marked as nega-
tive gene set. The single-cell RNA-seq data of two kinds of gene sets are constructed. 
K-fold cross validation method is utilized to divide the training and testing datasets 
in order infer the regulatory relationships between all target genes and regulatory 
factors. For each classification problem, different classification methods are selected. 
If the number of positive samples is zero, the sample is classified as negative, which 
reveal that there are no regulatory relationships between the regulator factor i and the 
targets. Otherwise SVM, RF, NB, GBDT, LR, DT and KNN are utilized, respectively. 
When the regulations of all regulatory factors have been inferred, the algorithm stop; 
otherwise repeat the above process. The regulations of all TFs are integrated in order 
to obtain the overall GRN. The flowchart is depicted in Fig. 1.

Experiments and discussions
Three real single-cell RNA-seq datasets are utilized to test our methods. The first 
dataset is derived from primitive endoderm cells differentiated from mouse embry-
onic stem cells, which includes 456 cells (Data1) [55]. The second dataset was derived 
from scRNA-Seq data obtained to examine direct reprogramming from mouse 
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embryonic fibroblast (MEF) cells to myocytes, which includes 405 cells (Data2) [56]. 
The third dataset was derived from definitive endoderm (DE) cells differentiated from 
human ES cells, which includes 758 cells (Data3) [57]. Three extracted sub networks 
and the validation regulatory relationships are from the previous study [27].

Receiver Operating Characteristic (ROC) curve considers true positive rate (TPR) and 
false positive rate (FPR), and could accurately reflect the relationship between TPR and 
FPR of a learner, which is a comprehensive manner to evaluate model sensitivity and 
specificity. TPR denotes the proportion of the inferred real regulatory relationships in all 
real regulations. FPR represents the proportion of the inferred false-positive regulatory 
relationships in all the true non-regulations. Area Under ROC Curve (AUC) is the area 
covered by ROC curve, which could reflect the performance of the learner more intui-
tively. In this part, ROC curves and AUC are utilized to evaluate our methods.

Fig. 1  The flowchart of gene regulatory network inference with single-cell RNA-seq data and supervised 
learning method
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Results

In this part SVM with different kernel functions (linear kernel (SVM + linear), polyno-
mial kernel (SVM + poly) and radial basis function (SVM + rbf )), RF, NB, GBDT, LR, DT 
and KNN are utilized to infer GRN with three real single-cell RNA-seq data, respec-
tively. Leave-One-Out Cross Validation (LOOCV) is utilized to classify the unknown 
regulatory relationships. To better evaluate the performance of supervised learning algo-
rithms, the famous unsupervised learning method (GENIE3) is also utilized to infer the 
same GRNs, which has the highest performance in the DREAM3 Challenge. The ROC 
curves and the corresponding AUC values of ten methods are depicted in Figs. 2, 3 and 
4, respectively. For Data1, SVM with polynomial kernel has the highest AUC value, 
which is 0.5% higher than SVM + rbf, 0.7% higher than SVM + linear, 13.3% higher 
than RF, 14% higher than DT, 14.6% higher than GBDT, 9.4% higher than KNN, 9.5% 
higher than LR, 10.5% higher than NB and 11.8% higher than GENIE3. From the results 
of ROC and AUC, SVM methods with three different kernel functions perform better 
than RF, DT, GBDT, KNN, LR and NB. GENIE3 performs better than RF, DT and GBDT, 
worse than other six classifiers. For Data2, in terms of ROC curve, KNN and RF have 
the similar performances, which are better than other eight methods. In terms of AUC, 
KNN has the best performance, which is 2.9% higher than SVM + poly, 7.8% higher than 
SVM + rbf, 2.7% higher than SVM + linear, 2.1% higher than RF, 17.3% higher than DT, 
10.5% higher than GBDT, 30.3% higher than LR, 7.2% higher than NB and 23.4% higher 
than GENIE3. Unsupervised learning method (GENIE3) and LR have lower AUC value 
than other eight supervised learning methods, which are less than 0.5. For Data3, RF 
has the highest AUC value, which is 5.3% higher than SVM + poly, 5.1% higher than 
SVM + linear, 11.3% higher than SVM + rbf, 17.1% higher than DT, 11.9% higher than 
GBDT, 2.9% higher than KNN, 17.7% higher than LR, 13.1% higher than NB, and 22.1% 
higher than GENIE3. GENIE3 has the worst performance. Combined with ROC curves, 

Fig. 2  AUC and ROC performances of ten methods by LOOCV with Data1 for GRN inference
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we can see that in most cases the performance GENIE3 is less than random and super-
vised learning methods perform better than unsupervised learning method.

Discussions

Compared with the transcriptome data by traditional sequencing technologies, sing-
cell RNA-seq data has its own internal characteristics. In this part, we compare 

Fig. 3  AUC and ROC performances of ten methods by LOOCV with Data2 for GRN inference

Fig. 4  AUC and ROC performances of ten methods by LOOCV with Data3 for GRN inference
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the performances of SVM methods with different kernel functions in our proposed 
method. We also compare SVM with RF, NB, GBDT, DT, LR and KNN. threefold 
cross validation, fivefold cross validation and tenfold cross validation are utilized and 
the AUC results and ROC curves of nine methods with three datasets are depicted in 
Figs. 5, 6, 7, 8, 9, 10, 11, 12 and 13, respectively. For threefold cross validation results, 

Fig. 5  AUC and ROC performances of nine classifiers with Data1 and 3-cross validation method for GRN 
inference

Fig. 6  AUC and ROC performances of nine classifiers with Data1 and 5-cross validation method for GRN 
inference
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SVM + rbf, NB and RF have the highest AUC values with Data1, Data2 and Data3, 
respectively. For fivefold cross validation results, with Data1 SVM + linear is 1.45% 
higher than SVM + rbf, 3% higher than SVM + poly, 14.6% higher than RF, 15.7% 
higher than DT, 16.3% higher than GBDT, 8.6% higher than KNN, 9.6% higher than 
LR and 6.1% higher than NB. With Data2, KNN has the highest AUC value, which 
is 0.63703. With Data3, RF also has the highest AUC value, which is 7% higher than 

Fig. 7  AUC and ROC performances of nine classifiers with Data1 and 10-cross validation method for GRN 
inference

Fig. 8  AUC and ROC performances of nine classifiers with Data2 and 3-cross validation method for GRN 
inference
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SVM + rbf, 6.7% higher than SVM + linear, 5.4% higher than SVM + poly, 16.8% 
higher than DT, 6.6% higher than GBDT, 3.8% higher than KNN, 26.9% higher than 
LR and 15.4% higher than NB. From tenfold cross validation results, it could be seen 
that SVM + rbf is 0.66% higher than SVM + poly, 1.4% higher than SVM + linear, 
13.7% higher than RF, 17.4% higher than DT, 14% higher than GBDT, 15.6% higher 
than KNN, 8.3% higher than LR and 1.0% higher than NB with Data1. With Data2 and 

Fig. 9  AUC and ROC performances of nine classifiers with Data2 and 5-cross validation method for GRN 
inference

Fig. 10  AUC and ROC performances of nine classifiers with Data2 and 10-cross validation method for GRN 
inference
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Data3, KNN and RF have the higher AUC performances than other eight methods, 
respectively.

In order to compare the performances of different supervised learning methods for 
GRN inference obviously, we rank these nine methods according to the performances 
of LOOCV (Figs.  2, 3 and 4), threefold cross validation (Figs.  5, 8 and 11), fivefold 

Fig. 11  AUC and ROC performances of nine classifiers with Data3 and 3-cross validation method. for GRN 
inference

Fig. 12  AUC and ROC performances of nine classifiers with Data3 and 5-cross validation method for GRN 
inference
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cross validation (Figs.  6, 9 and 12) and tenfold cross validation (Figs.  7, 10 and 13) 
with three datasets. The ranking results are listed in Table 1. From Table 1, it could 
be clearly seen that in most cases SVM, RF and KNN methods have the highest rank-
ing performances among nine classifiers, which show that these three methods could 
infer gene regulatory network more accurately. DT and LR have worse performances 
than other seven methods for gene regulatory network inference. Among SVM meth-
ods with three kernel functions, SVM methods with linear kernel and polynomial 
kernel have the higher ranking performances than SVM with rbf kernel, which prove 
that linear and polynomial functions are fitter to model single-cell RNA-seq data.

Fig. 13  AUC and ROC performances of nine classifiers with Data3 and 10-cross validation method for GRN 
inference

Table 1  Ranking performances of nine methods with three datasets

SVM + poly SVM + rbf SVM + linear RF DT GBDT KNN LR NB

LOOCV Data1 1 2 3 7 8 9 5 4 6

Data2 4 6 3 2 8 7 1 9 5

Data3 4 5 3 1 8 6 2 9 7

threefold cross validation Data1 2 1 3 9 8 7 6 5 4

Data2 4 5 3 6 8 7 2 9 1

Data3 6 4 5 1 7 3 2 9 8

fivefold cross validation Data1 3 2 1 7 8 9 5 6 4

Data2 5 6 3 2 8 7 1 9 4

Data3 3 6 5 1 8 4 2 9 7

tenfold cross validation Data1 2 1 3 6 9 7 8 4 5

Data2 5 6 3 4 8 7 1 9 2

Data3 3 5 4 1 8 6 2 9 7

Average ranking 3.5 4.1 3.25 3.9 8 6.6 3.1 7.6 5
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Conclusions
In this paper, a hybrid supervised learning method based on SVM, RF, NB, GBDT, LR, 
DT and KNN is utilized to solve the binary classification problem of gene regulatory net-
work inference. In SVM, three different kernel functions (linear, polynomial and radial 
basis function) are also utilized. Three real single-cell RNA-seq datasets from mouse and 
human are utilized to test these supervised learning methods. Nine supervised learn-
ing methods and one unsupervised learning method are utilized. With Data1, Data2 and 
Data3, in terms of AUC, SVM, KNN and RF are 0.5%-14%, 2.1%-30.3% and 2.9%-22.1% 
higher than other nine methods, respectively. The inference results prove that in most 
cases supervised learning methods (SVM, RF, NB, GBDT, LR, DT and KNN) have the 
better ROC and AUC performances than unsupervised learning method (GENIE3).

We also compare the performances of SVM methods with different kernel functions, 
RF, NB, GBDT, LR, DT and KNN further. threefold cross validation, fivefold cross valida-
tion and tenfold cross validation are utilized. The results show that in most cases SVM, 
RF and KNN methods have the best performances among nine classifiers. Among SVM 
methods with three kernel functions, SVM methods with linear kernel and polynomial 
kernel have the better performance than SVM with rbf kernel, which prove that linear 
and polynomial functions are fitter to model single-cell RNA-seq data than rbf kernel.
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